Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 s3VZW04NdeNmmwnP0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-21 15:05:43.266364+00:00 1
2 UV8ipuEGQCWVYJxR0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-21 15:05:43.259763+00:00 1
1 tCINf5NXPYnKNmvA0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-21 15:05:43.127206+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-21 15:05:41 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7fee0c0a0190>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-21 15:05:41 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-21 15:05:41 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-21 15:05:41 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 tCINf5NXPYnKNmvA0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-21 15:05:43.127206+00:00 1
2 UV8ipuEGQCWVYJxR0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-21 15:05:43.259763+00:00 1
3 s3VZW04NdeNmmwnP0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-21 15:05:43.266364+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 UV8ipuEGQCWVYJxR0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-21 15:05:43.259763+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
2 VN005Snf6cdX0000 None True Research intestine IgD Von Ebner's gland IgM C... None None notebook None None None None None 2024-10-21 15:05:44.915059+00:00 1
21 HMV4xHKuTXJw0000 None True Igy IgY Cardiac muscle cell Basal cells of olf... None None notebook None None None None None 2024-10-21 15:05:44.916267+00:00 1
29 l3n2PYZaNxzT0000 None True Igm Chandelier cells intestine Teeth Intercala... None None notebook None None None None None 2024-10-21 15:05:44.916769+00:00 1
38 7ajMQXOwH4x50000 None True Cluster intestine Betz cells IgE. None None notebook None None None None None 2024-10-21 15:05:44.917344+00:00 1
39 h0gLJfb6LuBO0000 None True Igg visualize Club cell research Corticotropes... None None notebook None None None None None 2024-10-21 15:05:44.917407+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 tCINf5NXPYnKNmvA0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-21 15:05:43.127206+00:00 1
2 UV8ipuEGQCWVYJxR0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-21 15:05:43.259763+00:00 1
3 s3VZW04NdeNmmwnP0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-21 15:05:43.266364+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 tCINf5NXPYnKNmvA0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-21 15:05:43.127206+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 UV8ipuEGQCWVYJxR0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-21 15:05:43.259763+00:00 1
3 s3VZW04NdeNmmwnP0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-21 15:05:43.266364+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 tCINf5NXPYnKNmvA0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-21 15:05:43.127206+00:00 1
3 s3VZW04NdeNmmwnP0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-21 15:05:43.266364+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 s3VZW04NdeNmmwnP0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-21 15:05:43.266364+00:00 1
2 UV8ipuEGQCWVYJxR0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-21 15:05:43.259763+00:00 1
1 tCINf5NXPYnKNmvA0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-21 15:05:43.127206+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
2 VN005Snf6cdX0000 None True Research intestine IgD Von Ebner's gland IgM C... None None notebook None None None None None 2024-10-21 15:05:44.915059+00:00 1
9 yIpEdu3J1ypv0000 None True Igy Basal cells of olfactory epithelium visual... None None notebook None None None None None 2024-10-21 15:05:44.915513+00:00 1
19 CoJheQp2WgPZ0000 None True Ascending Colon efficiency research study. None None notebook None None None None None 2024-10-21 15:05:44.916142+00:00 1
20 2YpObOPxFVFV0000 None True Igm research IgY IgA IgY. None None notebook None None None None None 2024-10-21 15:05:44.916204+00:00 1
23 6Q3qzi7H27iJ0000 None True Research IgY efficiency IgD Cardiac muscle cel... None None notebook None None None None None 2024-10-21 15:05:44.916392+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
2 VN005Snf6cdX0000 None True Research intestine IgD Von Ebner's gland IgM C... None None notebook None None None None None 2024-10-21 15:05:44.915059+00:00 1
9 yIpEdu3J1ypv0000 None True Igy Basal cells of olfactory epithelium visual... None None notebook None None None None None 2024-10-21 15:05:44.915513+00:00 1
19 CoJheQp2WgPZ0000 None True Ascending Colon efficiency research study. None None notebook None None None None None 2024-10-21 15:05:44.916142+00:00 1
20 2YpObOPxFVFV0000 None True Igm research IgY IgA IgY. None None notebook None None None None None 2024-10-21 15:05:44.916204+00:00 1
23 6Q3qzi7H27iJ0000 None True Research IgY efficiency IgD Cardiac muscle cel... None None notebook None None None None None 2024-10-21 15:05:44.916392+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
2 VN005Snf6cdX0000 None True Research intestine IgD Von Ebner's gland IgM C... None None notebook None None None None None 2024-10-21 15:05:44.915059+00:00 1
23 6Q3qzi7H27iJ0000 None True Research IgY efficiency IgD Cardiac muscle cel... None None notebook None None None None None 2024-10-21 15:05:44.916392+00:00 1
105 lWh3sWlGjL180000 None True Research Cervix IgA Corticotropes IgG1. None None notebook None None None None None 2024-10-21 15:05:44.924645+00:00 1
151 ZTZVcHnRecng0000 None True Research Cervix IgD classify rank Ascending co... None None notebook None None None None None 2024-10-21 15:05:44.930021+00:00 1
197 FnotRMJFxdzQ0000 None True Research Von Ebner's gland efficiency Cervix B... None None notebook None None None None None 2024-10-21 15:05:44.932802+00:00 1
229 pv0QZwf38WEp0000 None True Research candidate intestine. None None notebook None None None None None 2024-10-21 15:05:44.937477+00:00 1
262 KTnzMRuNlY7i0000 None True Research intestinal efficiency Club cell study. None None notebook None None None None None 2024-10-21 15:05:44.939464+00:00 1
307 jdvVU9ZH4yXJ0000 None True Research rank Chandelier cells efficiency. None None notebook None None None None None 2024-10-21 15:05:45.015072+00:00 1
346 GlLuqyW98IJq0000 None True Research gastric inhibitory peptide-secreting ... None None notebook None None None None None 2024-10-21 15:05:45.020093+00:00 1
390 mxvrwFcwyfg00000 None True Research Corticotropes Club cell. None None notebook None None None None None 2024-10-21 15:05:45.022722+00:00 1
412 Lc5xKFnErzEF0000 None True Research candidate cluster study IgE Corticotr... None None notebook None None None None None 2024-10-21 15:05:45.026694+00:00 1
477 6cBJidLkOQca0000 None True Research IgA gastric inhibitory peptide-secret... None None notebook None None None None None 2024-10-21 15:05:45.033265+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 tCINf5NXPYnKNmvA0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-21 15:05:43.127206+00:00 1
3 s3VZW04NdeNmmwnP0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-21 15:05:43.266364+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 UV8ipuEGQCWVYJxR0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-21 15:05:43.259763+00:00 1
3 s3VZW04NdeNmmwnP0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-21 15:05:43.266364+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries